Cosmic neutrinos offer a new and interesting view of the high-energy universe. They are unique astrophysical messengers since they can travel over cosmic distances without being deflected or absorbed. Potential sources of cosmic neutrinos include some of the most energetic objects in the universe, such as supernova remnants, active galactic nuclei, and gamma-ray bursts. The IceCube neutrino telescope, currently under construction, consists of two sub-detectors: a surface air shower array and an array of optical modules deployed in the deep, clear glacial ice below the South Pole. IceCube detects high-energy neutrinos through the light emitted at their point of interaction as well as the Cherenkov light radiated by energetic secondary charged leptons. I will present the current status of neutrino searches and discuss the prospects for the full cubic kilometer array.